A New Triterpenoid Oligoglycoside Escin IVe from the Seeds of Aesculus Chinensis

Jing ZHAO^{1}, Xiu Wei YANG^{1} *, Yu Xin CUI ${ }^{1}$, Xue Hui LIU^{1}, Shun He OUYANG ${ }^{2}$
${ }^{1}$ National Laboratory of Natural and Biomimetic Drugs, Beijing Medical University, Beijing 100083
${ }^{2}$ Yantai Luye Pharmaceutical Co. Ltd., 43 Yingbin Road, Yantai, Shandong 264001

Abstract

A new triterpenoid saponin named escin IVe was isolated from the seeds of Aesculus chinensis. Its structure was established as 28 -tigloylprotoaescigenin-3 β-O[β-D-glucopyranosyl (1-2)] [β-D-glucopyranosyl (1-4)]- β-D-glucopyranosiduronic acid.

Keywords: Aesculus chinensis; hippocastanaceae; triterpenoid saponins; escin IVe.

In the course of our studies on new biologically active saponins of natural medicines, we have isolated escins Ia, Ib, IVa, IVb, IVc, and IVd from seeds of Aesculus chinensis Bge.(Hippocastanaceae), and single crystal X-ray diffraction analysis was undertaken on escin Ia^{1}, which confirms the absolute configuration and sugar sequence. The present paper describes the structure determination of a new triterpenoid saponin named escin IVe from the same plant.

Escin IVe, white powder. Positive-mode TOF-MS: m/z $1111[\mathrm{M}+\mathrm{Na}]^{+}$, coupled with NMR data, corresponds to an empirical formula of $\mathrm{C}_{53} \mathrm{H}_{84} \mathrm{O}_{23}$. The IR spectrum showed absorption bands due to carboxyl and α, β-unsaturated ester at $1731,1708,1653$ and $1649 \mathrm{~cm}^{-1}$ and broad bands at $3404,1072 \mathrm{~cm}^{-1}$ suggestive of oligoglycosidic structure ${ }^{2}$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals were assigned with the aid of HMQC, HMBC, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, and NOESY spectra and by comparison with those of escin Ia which is a pentacyclic triterpene saponin having an olean-12-ene skeleton bearing oxygenated functions at C-3, C-16, C-21, C-22, C-24 and C-28. Characteristic signals owing to a protoaescigenin skeleton, a tigloyl group [${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta 6.94(1 \mathrm{H}, d q$-like, H-3"'"), 1.51 $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{H}-4{ }^{\prime \prime \prime}\right)$ and $1.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime \prime \prime}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$: see Table 1] and a trisaccharide moiety were observed. However, the chemical shifts of C-17, C-21, C-22 and C-28 together with corresponding protons differed from those of escin Ia (see Table 1). The location of the tigloyl group at $\mathrm{C}-28$ was deduced from long-range correlation
peaks between the carbonyl carbon of the tigloyl group and Ha,b-28 in HMBC spectrum and cross peaks between the $\mathrm{Me}-5 " \mathrm{l}$ and $\mathrm{Ha}, \mathrm{b}-28$ in ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum.

Scheme. Structures of Escins Ia and Ive

The sugar unit includes three monosaccharides as demonstrated in the HMBC spectrum by three anomeric carbon signals at $\delta 104.4,104.0$ and 104.4 crossed with anomeric protons at $\delta 4.84\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{Glc} \mathrm{A}-1^{\prime}\right), 5.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{Glc}-1^{\prime \prime}\right)$ and $5.16\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{Glc}-1^{\prime \prime \prime}\right)$, respectively. The large J values indicated β-glycosidic linkages in all cases, identical with those of escin Ia. On mild acid
hydrolysis, escin IVe yielded glucose and glucuronic acid. HMBC (correlations between $\mathrm{H}-3$ and $\mathrm{C}-1^{\prime}$; C-3 and $\mathrm{H}-1^{\prime}$; C-2' and $\mathrm{H}-1$ "; and $\mathrm{C}-4$ ' and $\mathrm{H}-1^{\prime \prime}$ ') and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY (cross peaks between H-3 and H-1'; H-2' and H-1"; and H-4' and H-1"') experiments also verified the glycosidation position and the sugar sequence. With all the above evidences, the structure of escin IVe was established as 28-tigloyl-protoaescigenin-3 β-O- [β-D-glucopyranosyl (1-2)] [β-D-glucopyranosyl (1-4)] - β-D-glucopyranosiduronic acid.

Table 1. ${ }^{13} \mathrm{C}$ NMR Spectra Data for Escins IVe and Ia

C	IVe	Ia ${ }^{1}$	C	IVe	Ia
1	38.3	38.3	$1{ }^{\prime}$	104.4	104.5
2	26.3	26.4	$2 '$	79.4	79.5
3	90.9	90.9	$3 '$	76.3	76.3
4	43.4	43.5	$4 '$	81.7	81.7
5	55.9	55.9	$5 '$	75.7	75.6
6	18.3	18.4	$6{ }^{\prime}$	172.2	172.2
7	33.0	33.1	$1{ }^{\prime \prime}$	104.0	104.1
8	39.7	39.8	2 "	75.5	75.6
9	46.6	46.6	3"	78.3	78.4
10	36.2	36.4	$4 "$	69.5	69.6
11	23.9	23.9	$5{ }^{\prime \prime}$	77.1	78.0
12	123.0	123.0	6"	61.3	61.4
13	143.1	142.7	$1{ }^{\prime \prime}$	104.4	104.5
14	40.7	41.5	$2{ }^{\prime \prime}$	74.4	74.8
15	34.5	34.5	3 "'	78.3	78.2
16	67.9	67.9	4"'	71.3	71.4
17	46.6	47.8	$5{ }^{\prime \prime}$	77.8	77.9
18	41.7	39.9	6"'	62.1	62.2
19	47.5	47.1	$1 "$ "	167.7	167.9
20	36.1	36.2	2"'"	129.0	129.3
21	77.8	79.3	3"'	136.9	136.8
22	73.4	74.1	4""	14.0	14.1
23	22.3	22.3	5""	12.1	12.3
24	63.1	63.2	1""'		170.9
25	15.4	15.4	2""'		20.8
26	16.7	16.6			
27	27.2	27.3			
28	66.7	63.6			
29	30.4	29.4			
30	19.2	20.0			

References

1. J. Zhao, X. W. Yang, Y. X. Cui et al, Chinese Chem. Lett., 1999, in press.
2. M. Yoshicawa, T. Murakawa, H. Matsuda, J. Yamahara et al, Chem. Pharm. Bull. 1996, 44(8), 1454.

Received 18 December 1998

