A New Triterpenoid Oligoglycoside Escin IVe from the Seeds of Aesculus Chinensis

Jing ZHAO¹, Xiu Wei YANG¹*, Yu Xin CUI¹, Xue Hui LIU¹, Shun He OUYANG²

¹National Laboratory of Natural and Biomimetic Drugs, Beijing Medical University, Beijing 100083
²Yantai Luye Pharmaceutical Co. Ltd., 43 Yingbin Road, Yantai, Shandong 264001

Abstract: A new triterpenoid saponin named escin IV e was isolated from the seeds of *Aesculus chinensis*. Its structure was established as 28-tigloylprotoaescigenin-3 β -O-[β -D-glucopyranosyl (1-2)] [β -D-glucopyranosyl (1-4)] - β -D-glucopyranosiduronic acid.

Keywords: Aesculus chinensis; hippocastanaceae; triterpenoid saponins; escin IVe.

In the course of our studies on new biologically active saponins of natural medicines, we have isolated escins Ia, Ib, IVa, IVb, IVc, and IVd from seeds of *Aesculus chinensis* Bge.(Hippocastanaceae), and single crystal X-ray diffraction analysis was undertaken on escin Ia¹, which confirms the absolute configuration and sugar sequence. The present paper describes the structure determination of a new triterpenoid saponin named escin IVe from the same plant.

Escin IVe, white powder. Positive-mode TOF-MS: $m/z 1111 [M + Na]^+$, coupled with NMR data, corresponds to an empirical formula of $C_{53}H_{84}O_{23}$. The IR spectrum showed absorption bands due to carboxyl and α , β -unsaturated ester at 1731, 1708, 1653 and 1649 cm⁻¹ and broad bands at 3404, 1072 cm⁻¹ suggestive of oligoglycosidic structure². ¹H and ¹³C NMR signals were assigned with the aid of HMQC, HMBC, ¹H-¹H COSY, and NOESY spectra and by comparison with those of escin Ia which is a pentacyclic triterpene saponin having an olean-12-ene skeleton bearing oxygenated functions at C-3, C-16, C-21, C-22, C-24 and C-28. Characteristic signals owing to a protoaescigenin skeleton, a tigloyl group [¹H-NMR: δ 6.94 (1H, *dq*-like, H-3^{III}), 1.51 (3H, d, J=5.5Hz, H-4^{IIII}) and 1.76 (3H, s, H-5^{IIII}); ¹³C-NMR: see **Table 1**] and a trisaccharide moiety were observed. However, the chemical shifts of C-17, C-21, C-22 and C-28 together with corresponding protons differed from those of escin Ia (see **Table 1**). The location of the tigloyl group at C-28 was deduced from long-range correlation

peaks between the carbonyl carbon of the tigloyl group and Ha,b-28 in HMBC spectrum and cross peaks between the Me-5"" and Ha,b-28 in ¹H-¹H NOESY spectrum.

Scheme. Structures of Escins Ia and Ive

The sugar unit includes three monosaccharides as demonstrated in the HMBC spectrum by three anomeric carbon signals at δ 104.4, 104.0 and 104.4 crossed with anomeric protons at δ 4.84 (1H, d, J=7.0Hz, H-Glc A-1'), 5.56 (1H, d, J=7.5Hz, H-Glc-1") and 5.16 (1H, d, J=8.0Hz, H-Glc-1""), respectively. The large J values indicated β -glycosidic linkages in all cases, identical with those of escin Ia. On mild acid hydrolysis, escin IVe yielded glucose and glucuronic acid. HMBC (correlations between H-3 and C-1'; C-3 and H-1'; C-2' and H-1"; and C-4' and H-1"") and ¹H-¹H NOESY (cross peaks between H-3 and H-1'; H-2' and H-1"; and H-4' and H-1"") experiments also verified the glycosidation position and the sugar sequence. With all the above evidences, the structure of escin IVe was established as 28-tigloyl-protoaescigenin-3 β -O- [β -D-glucopyranosyl (1-2)] [β -D-glucopyranosyl (1-4)] - β -D-glucopyranosiduronic acid.

Table 1. ¹³C NMR Spectra Data for Escins IVe and Ia

С	IVe	Ia ¹	С	IVe	Ia
1	38.3	38.3	1'	104.4	104.5
2	26.3	26.4	2'	79.4	79.5
3	90.9	90.9	3'	76.3	76.3
4	43.4	43.5	4'	81.7	81.7
5	55.9	55.9	5'	75.7	75.6
6	18.3	18.4	6'	172.2	172.2
7	33.0	33.1	1"	104.0	104.1
8	39.7	39.8	2"	75.5	75.6
9	46.6	46.6	3"	78.3	78.4
10	36.2	36.4	4"	69.5	69.6
11	23.9	23.9	5"	77.1	78.0
12	123.0	123.0	6"	61.3	61.4
13	143.1	142.7	1'''	104.4	104.5
14	40.7	41.5	2'''	74.4	74.8
15	34.5	34.5	3'''	78.3	78.2
16	67.9	67.9	4'''	71.3	71.4
17	46.6	47.8	5'''	77.8	77.9
18	41.7	39.9	6'''	62.1	62.2
19	47.5	47.1	1""	167.7	167.9
20	36.1	36.2	2""	129.0	129.3
21	77.8	79.3	3""	136.9	136.8
22	73.4	74.1	4""	14.0	14.1
23	22.3	22.3	5""	12.1	12.3
24	63.1	63.2	1'''''		170.9
25	15.4	15.4	2'''''		20.8
26	16.7	16.6			
27	27.2	27.3			
28	66.7	63.6			
29	30.4	29.4			
30	19.2	20.0			

Jing ZHAO et al.

References

- 1. J. Zhao, X. W. Yang, Y. X. Cui et al, Chinese Chem. Lett., 1999, in press.
- M. Yoshicawa, T. Murakawa, H. Matsuda, J. Yamahara et al, Chem. Pharm. Bull. 1996, 44(8), 1454.

Received 18 December 1998

476